

B.Sc Botany Single Major From 2023-24 (Syllabus-Curriculum) Course Structure

Year	Semester	Course	Title of the Course	No. of Hrs /Week	No. of Credits
	Ι	1	Introduction to Classical Biology	3+2	4
Ι	Ι	2	Introduction to Applied Biology	3+2	4

SEMESTER-I

COURSE 1: INTRODUCTION TO CLASSICAL BIOLOGY

Theory	Credits: 4	5 hrs/week
Incory	ereans. I	

Learning objectives

The student will be able to learn the diversity and classification of living organisms and understand their chemical, cytological, evolutionary and genetic principles.

Learning Outcomes

1. Learn the principles of classification and preservation of biodiversity

2. Understand the plant anatomical, physiological and reproductive processes.

3. Knowledge on animal classification, physiology, embryonic development and their economic importance.

4. Outline the cell components, cell processes like cell division, heredity and molecular processes.

5. Comprehend the chemical principles in shaping and driving the macromolecules and life processes.

Unit 1: Introduction to systematics, taxonomy and ecology.

- 1.1. Systematics Definition and concept, Taxonomy Definition and hierarchy.
- 1.2. Nomenclature ICBN and ICZN, Binomial and trinomial nomenclature.
- 1.3. Ecology Concept of ecosystem, Biodiversity and conservation.
- 1.4. Pollution and climate change.

Unit 2: Essentials of Botany.

2.1. The classification of plant kingdom.

2.2. Plant physiological processes (Photosynthesis, Respiration, Transpiration, phytohormones).

2.3. Structure of flower – Micro and macro sporogenesis, pollination, fertilization and structure of mono and dicot embryos.

2.4 Mushroom cultivation, floriculture and landscaping.

Unit 3: Essentials of Zoology

3.1. The classification of Kingdom Animalia and Chordata.

3.2 Animal Physiology - Basics of Organ Systems & their functions, Hormones and Disorders

3.3 Developmental Biology - Basic process of development (Gametogenesis, Fertilization,

Cleavage and Organogenesis)

34 Economic Zoology – Sericulture, Apiculture, Aquaculture

ADIKAVI NANNAYA UNIVERSITY: RAJMAHENDRAVARAM

Unit 4: Cell biology, Genetics and Evolution

4.1. Cell theory, Ultrastructure of prokaryotic and eukaryotic cell, cell cycle.

4.2. Chromosomes and heredity – Structure of chromosomes, concept of gene.

4.3. Central Dogma of Molecular Biology.

4.4. Origin of life

Unit 5: Essentials of chemistry

5.1. Definition and scope of chemistry, applications of chemistry in daily life.

5.2. Branches of chemistry

5.3. Chemical bonds – ionic, covalent, noncovalent – Vander Waals, hydrophobic, hydrogen bonds.

5.4. Green chemistry

References

1. Sharma O.P., 1993. Plant taxonomy. 2nd Edition. McGraw Hill publishers.

2. Pandey B.P., 2001. The textbook of botany Angiosperms. 4th edition. S. Chand publishers, New Delhi, India.

3. Jordan E.L., Verma P.S., 2018. Chordate Zoology. S. Chand publishers, New Delhi, India.

4. Rastogi, S.C., 2019. Essentials of animal physiology. 4th Edition. New Age International Publishers.

5. Verma P.S., Agarwal V.K., 2006. Cell biology, genetics, Molecular Biology, Evolution and Ecology. S. Chand publishers, New Delhi, India.

6. Sathyanarayana U., Chakrapani, U., 2013. Biochemistry. 4th Edition. Elsevier publishers.

7. Jain J.L., Sunjay Jain, Nitin Jain, 2000. Fundamentals of Biochemistry. S. Chand publishers, New Delhi, India.

8. Karen Timberlake, William Timberlake, 2019. Basic chemistry. 5th Edition. Pearson publishers.

9 Subrata Sen Gupta, 2014. Organic chemistry. 1st Edition. Oxford publishers.

ADIKAVI NANNAYA UNIVERSITY: RAJMAHENDRAVARAM

ACTIVITIES:

- 1. Make a display chart of life cycle of nonflowering plants.
- 2. Make a display chart of life cycle of flowering plants.
- 3. Study of stomata
- 4. Activity to prove that chlorophyll is essential for photosynthesis
- 5. Study of pollen grains.
- 6. Observation of pollen germination.
- 7. Ikebana.
- 8. Differentiate between edible and poisonous mushrooms.
- 9. Visit a nearby mushroom cultivation unit and know the economics of mushroom cultivation.
- 10. Draw the Ultrastructure of Prokaryotic and Eukaryotic Cell
- 11. Visit to Zoology Lab and observe different types of preservation of specimens
- 12. Hands-on experience of various equipment Microscopes, Centrifuge, pH Meter,

Electronic Weighing Balance, Laminar Air Flow

- 13. Visit to Zoo / Sericulture / Apiculture / Aquaculture unit
- 14. List out different hormonal, genetic and physiological disorders from the society

SEMESTER-I

COURSE 2: INTRODUCTION TO APPLIED BIOLOGY

Theory	Credits: 4	5 hrs/week
Incorg	eredits. I	

Learning objectives

The student will be able to learn the foundations and principles of microbiology, immunology, biochemistry, biotechnology, analytical tools, quantitative methods, and bioinformatics.

Learning Outcomes

1. Learn the history, ultrastructure, diversity and importance of microorganisms.

2. Understand the structure and functions of macromolecules.

- 3. Knowledge on biotechnology principles and its applications in food and medicine.
- 4. Outline the techniques, tools and their uses in diagnosis and therapy.
- 5. Demonstrate the bioinformatics and statistical tools in comprehending the complex biological data.

Unit 1: Essentials of Microbiology and Immunology

1.1. History and Major Milestones of Microbiology; Contributions of Edward Jenner, Louis Pasteur, Robert Koch and Joseph Lister.

1.2. Groups of Microorganisms – Structure and characteristics of Bacteria, Fungi, Archaea and Virus.

1.3. Applications of microorganisms in - Food, Agriculture, Environment, and Industry.

1.4. Immune system – Immunity, types of immunity, cells and organs of immune system.

Unit 2: Essentials of Biochemistry

- 2.1. Biomolecules I Carbohydrates, Lipids.
- 2.2. Biomolecules II Amino acids & Proteins.
- 2.3. Biomolecules III Nucleic acids -DNA and RNA.
- 2.4. Basics of Metabolism Anabolism and catabolism.

Unit 3: Essentials of Biotechnology

3.1. History, scope, and significance of biotechnology. Applications of biotechnology in Plant, Animal, Industrial and Pharmaceutical sciences.

3.2. Environmental Biotechnology – Bioremediation and Biofuels, Bio fertilizers and Bio pesticides.

3.3. Genetic engineering – Gene manipulation using restriction enzymes and cloning vectors; Physical, chemical, and biological methods of gene transfer.

3.4. Transgenic plants – Stress tolerant plants (biotic stress – BT cotton, abiotic stress – salt tolerance). Transgenic animals – Animal and disease models.

ADIKAVI NANNAYA UNIVERSITY: RAJMAHENDRAVARAM

Unit 4: Analytical Tools and techniques in biology – Applications

4.1. Applications in forensics - PCR and DNA fingerprinting

4.2. Immunological techniques - Immunoblotting and ELISA.

4.3. Monoclonal antibodies – Applications in diagnosis and therapy.

4.4. Eugenics and Gene therapy

Unit 5: Biostatistics and Bioinformatics

5.1. Data collection and sampling. Measures of central tendency – Mean, Median, Mode.

5.2. Measures of dispersion – range, standard deviation and variance. Probability and tests of significance.

5.3. Introduction, Genomics, Proteomics, types of Biological data, biological databases- NCBI,

EBI, Gen Bank; Protein 3D structures, Sequence alignment

5.4. Accessing Nucleic Acid and Protein databases, NCBI Genome Workbench

REFERENCES

1. Gerard J., Tortora, Berdell R. Funke, Christine L. Case., 2016. Microbiology: An Introduction. 11th Edition. Pearson publications, London, England.

2. Micale, J. Pelczar Jr., E.C.S. Chan., Noel R. Kraig., 2002. Pelczar Microbiology. 5th Edition. McGraw Education, New York, USA.

3. Sathyanarayana U., Chakrapani, U., 2013. Biochemistry. 4th Edition. Elsevier publishers.

4. Jain J.L., Sunjay Jain, Nitin Jain, 2000. Fundamentals of Biochemistry. S. Chand publishers, New Delhi, India.

5. R.C. Dubey, 2014. Advanced Biotechnology. S. Chand Publishers, New Delhi, India.

6. Colin Ratledge, Bjorn, Kristiansen, 2008. Basic Biotechnology. 3rd Edition. Cambridge Publishers.

7. U. Sathyanarayana, 2005. Biotechnology. 1st Edition. Books and Allied Publishers pvt. ltd., Kolkata.

8. Upadhyay, Upadhyay and Nath. 2016. Biophysical Chemistry, Principles and Techniques. Himalaya Publishing House.

9. Arthur M. Lesk. Introduction to Bioinformatics. 5th Edition. Oxford publishers.

10. AP Kulkarni, 2020. Basics of Biostatistics. 2nd Edition. CBS publishers.

ACTIVITIES

1. Identification of given organism as harmful or beneficial.

2. Observation of microorganisms from house dust under microscope.

3. Finding microorganism from pond water.

- 4. Visit to a microbiology industry or biotech company.
- 5. Visit to a waste water treatment plant.
- 6. Retrieving a DNA or protein sequence of a gene'
- 7. Performing a BLAST analysis for DNA and protein.
- 8. Problems on biostatistics.

9. Field trip and awareness programs on environmental pollution by different types of wastes andhazardous materials.

- 10. Demonstration on basic biotechnology lab equipment.
- 11. Preparation of 3D models of genetic engineering techniques.
- 12. Preparation of 3D models of transgenic plants and animals.

[**NOTE**: In the colleges where there is availability of faculty for microbiology and biotechnology, those chapters need to be handled by microbiology and biotechnology faculty. In other colleges, the above topics shall be dealt by Botany and Zoology faculty]

Course – I & II Model Paper (70 Marks)

	SECTION A (Multiple Choice Questions)	30 x 1 = 30 M
30 Multiple Choice Ques	stions (Each Unit 6 Questions)	
	SECTION B (Fill in the blanks)	10 x 1 = 10 M
10 Fill in the Blanks (Ea	uch Unit 2 Questions)	
	SECTION C (Very short answer questions)	10 x 1 = 10 M
10 Very short answer q	uestions (Each Unit 2 Questions)	
	SECTION D (Matching) (From 5 Units)	2 x 5 = 10 M
1 A		
В		
С		
D		
Ε		
2 A		
В		
С		
D		
E		
	SECTION E (True or False)	10 x 1 = 10 M

10 True or False (Each Unit 2 Questions)

B.Sc., Honours in BOTANY:MAJOR SEMESTER – II COURSE STRUCTURE

Year	Semester	Course	Title	No.	No. of
				Hrs./	Credits
				Week	
	II	II 3	Non-vascular Plants –(T)	3	3
			Non-vascular Plants –(P)	2	1
		4	Origin of Life and Diversity of Microbes –(T)	3	3
			Origin of Life and Diversity of Microbes –(P)	2	1

II Semester

Course 3: Non-Vascular Plants (Algae, Fungi, Lichens and Bryophytes) Credits -3

- I. Learning Objectives: By the end of this course the learner has:
- 1. To realize the characteristics and diversity of non-vascular plants.
- 2. To recognize the ecological and economic value of algae, fungi, lichens and bryophytes.
- 3. To inquire the habit, habitat, morphological features and life cycles of selected genera of non-vascular plants.
- **II. Learning Outcomes:** On completion of this course students will be able to:
- 1. Compile the general characteristics of algae and their significance in nature.
- 2. Compare and contrast the characteristics of different groups of algae.
- 3. Summarise the important features of fungi and their economic value.
- 4. Distinguish the characteristics of different groups of fungi.
- 5. Elaborate the features and significance of amphibians of plant kingdom
- 6. Explain the diversity among non-vascular plants.

III. Syllabus of Theory:

Unit-1: Introduction to Algae

- 1. General Characteristics of algae: Occurrence and distribution, cell structure, pigments, flagella and reserve food material.
- 2. Classification of algae: F.E.Fritsch (1935) and Lee (2008)
- 3. Thallus organization and life cycles in algae.
- 4. Ecological and economic importance of algae.

Unit-2: Biology of selected Algae

- 1. Occurrence, structure, reproduction and life cycle of:
 - (a) Chlorophyceae: Spirogyra (b) Phaeophyceae: Ectocarpus
 - (c) Xanthophyceae: Vaucheria (d) Rhodophyceae: Polysiphonia
- 2. A brief account of Bacillariophyceae
- 3. Culture and cultivation of Chlorella

Unit-3: Introduction to Fungi

- 1. General characteristics of fungi and Ainsworth (1973) classification.
- 2. Thallus organization and nutrition in fungi.
- 3. Reproduction in fungi (asexual and sexual); Heterothallism and parasexuality.
- 4. Ecological and economic importance of fungi.

Unit-4: Biology of selected Fungi

- 1. Occurrence, structure, reproduction and life cycle of:
 - (a) Mastigomycotina: Phytophthora (b) Zygomycotina: Rhizopus
 - (c) Ascomycotina: Penicillium (d) Basidiomycotina: Puccinia
- 2. Occurrence, structure and reproduction of lichens; ecological and economic importance of lichens.

Unit-5: Biology of Bryophytes

- 1. General characteristics of Bryophytes; Rothmaler (1951) classification.
- 2. Occurrence, morphology, anatomy, reproduction (developmental details are not needed) and life cycle of
 - (a) Hepaticopsida: Marchantia (b) Anthoceratopsida: Anthoceros
 - (c) Bryopsida: Funaria
- 3. General account on evolution of sporophytes in Bryophyta.

IV. Text Books:

- 1. Pandey, B.P. (2013) College Botany, Volume-I, S. Chand Publishing, New Delhi
- 2. Hait,G., K.Bhattacharya & A.K.Ghosh (2011) A Text Book of Botany, Volume-I, New Central Book Agency Pvt. Ltd., Kolkata

V. Reference Books:

- Fritsch, F.E. (1945) The Structure-& Reproduction of Algae (Vol. I & Vol. II) Cambridge University Press Cambridge, U.K.
- Bold, H.C.& M. J. Wynne (1984) Introduction to the Algae, Prentice-Hall Inc., New Jersey
- 3. Robert Edward Lee (2008) Phycology. Cambridge University Press, New York
- Van Den Hoek, C., D.G.Mann & H.M.Jahns (1996)Algae : An Introduction to Phycology. Cambridge University Press, New York.
- Alexopoulos, C.J., C.W.Mims & M.Blackwell (2007) Introductory Mycology, Wiley& Sons, Inc., New York

8Hrs.

10Hrs.

- Mehrotra, R.S.& K. R. Aneja (1990) An Introduction to Mycology. New Age International Publishers, New Delhi.
- Kevin Kavanagh (2005) Fungi; Biology and Applications John Wiley& Sons, Ltd., West Sussex, England.
- John Webster & R. W. S. Weber (2007) Introduction to Fungi, Cambridge University Press, New York.
- 9. Shaw, A.J.& B.Goffinet (2000) Bryophyte Biology .Cambridge University Press, New York.

VI. Suggested activities and evaluation methods:

Unit-1: Activity: Algae specimen collection from any water bodies in their locality, recording the characteristics, identification and classifying them according to Fritsch system.

Evaluation method: Evaluating the presentation or report summarizing findings.

Unit-2: Activity: Microscopic observations and recording distinguishing characters of any six algal forms excluding the genera in the syllabus.

Evaluation method: Conducting a Quiz or an exam/ evaluating the chart or drawings or summarized data on similarities and differences.

Unit-3: Activity: Collection or laboratory culture of fungi and reporting the important features.

Evaluation method: Evaluating the report/conducting JAM/Quiz/Group discussion.

Unit-4: Activity: Microscopic observations and summarizing the salient features of the fungal genera and lichen forms in the syllabus.

Evaluation method: Conducting a Quiz or an exam/ evaluating the chart or drawings or concise data on similarities and differences.

Unit-5: Collection, characterization, identification and classification of any four bryophytes from their native locality or college campus.

Evaluation method: Assessment of observations and documentation accuracy/presentation or report summarizing findings based on a rubric.

II Semester

Course 3: Non-vascular Plants (Algae, Fungi, Lichens, and Bryophytes)

Credits -1

- I. Course Outcomes: On successful completion of this practical course, student shall be able to:
 - 1. Identify some algal and fungal species based on the structure of thalli and reproductive organs.
 - 2. Decipher the lichens and Bryophytes based on morphological, anatomical and reproductive

features.

II. Laboratory/field exercises:

Study/ microscopic observation of vegetative, sectional/anatomical and reproductive structures of the following using temporary or permanent slides/ specimens/ mounts:

- 1. Algae: Spirogyra, Ectocarpus, Vaucheria and Polysiphonia; a centric and a pennate diatom.
- 2. Demonstration of culture and cultivation of Chlorella
- 3. Identification of some algal products available in local market.
- 4. Fungi: Phytophthora, Rhizopus, Penicillium and Puccinia
- 5. Identification of some fungal products available in the local market.
- 6. Lichens: Crustose, foliose and fruiticose
- 7. Bryophyta: Marchantia, Anthoceros and Funaria.

II Semester

Course 4: Origin of Life and Diversity of Microbes

Credits -3

I. Learning Objectives: By the end of this course the learner has:

- 1. To get awareness on origin and evolution of life.
- 2. To understand the diversity of microbial organisms.
- 3. To get awareness on importance of microbes in nature and agriculture.
- **II. Learning Outcomes:** On completion of this course students will be able to:
- 1. Illustrate diversity of viruses, multiplication and economic value.
- 2. Discuss the general characteristics, classification and economic importance of special groups of bacteria.
- 3. Explain the structure, nutrition, reproduction and significance of eubacteria.
- 4. Evaluate the interactions among soil microbes.
- 5. Compile the value and applications of microbes in agriculture.

III. Syllabus of Theory:

Unit-1: Origin of life and Viruses

- 1. Origin of life, concept of primary Abiogenesis; Miller and Urey experiment.; discovery of microorganisms, Pasteur experiments, germ theory of diseases.
- 2. Five kingdom classification of R.H. Whittaker
- 3. Shape and symmetry of viruses; structure of TMV and Gemini virus.
- 4. Multiplication of TMV; A brief account of prions, viroids and virusoids; Transmission of plant viruses and their control.
- 5. Significance of viruses in vaccine production, bio-pesticides and as cloning vectors.

Unit-2: Special groups of Bacteria

- 1. General characteristics, outline classification and economic importance of following special groups of bacteria:
 - a) Archaebacteria b) Chlamydiae c) Actinomycetes
 - d) Mycoplasma e) Phytoplasma f) Cyanobacteria
- 2. Culture and cultivation of Spirulina

10 Hrs.

Unit-3: Eubacteria

- 1. Occurrence, distribution and cell structure of eubacteria.
- 2. Classification of Eubacteria based on nutrition.
- 3. Reproduction- Asexual (Binary fission and endospores) and bacterial recombination (Conjugation, Transformation, Transduction).
- 4. Economic importance of Eu-bacteria with reference to their role in Agriculture and industry (fermentation and medicine).

Unit-4: Soil microbes – interactions

- 1. Distribution of soil microorganisms in soil.
- 2. Factors influencing the soil microflora Role of microorganisms in soil fertility.
- 3. Interactions among microorganisms, mutualism, comensalism, competition, amensalism, parasitism, predation.
- 4. Microorganisms of rhizosphere, phyllosphere and spermophere; microbial interactions and their effect on plant growth.

Unit-5: Microbes in agriculture

- 1. Mass production, mode of applications, advantages and limitations of bacterial inoculants (*Rhizobium, Azotobacter, Azospirillum*, Cyanobacteria).
- 2. Role of Frankia and VAM in soil fertility.
- 3. Microbial biopesticides: mode of action, factors influencing, target pests; microbial herbicides.

IV. Text Books:

- Bhattacharjee, R.N., (2017) Introduction to Microbiology and Microbial Diversity, Kalyani Publishers, New Delhi.
- Dubey, R.C. & D. K. Maheswari (2013) A Text Book of Microbiology, S.Chand & Company Ltd., New Delhi
- 3. Toshniwal, R.L. (2007) Agricultural Microbiology, Agrobios (India), Jodhpur

8 Hrs.

10 Hrs.

V. Reference Books:

- Pelczar Jr., M.J., E.C.N. Chan & N. R. Krieg (2001) Microbiology, Tata McGraw- Hill Co, New Delhi
- Presscott, L. Harley, J. and Klein, D. (2005) Microbiology, Tata McGraw –Hill Co. New Delhi.
- Gyaneshwar, A.D., G.J. Parekh, and V.S. Reddy (2004) Agricultural Microbiology: Plant-Soil Interactions, Research Signpost, Kerala, India
- 4. Zaki A. Shuler and Zainul Abid (2014) Agricultural Microbiology: Principles and Applications, CRC Press, Boca Raton, Florida, USA

VI. Suggested activities and evaluation methods:

Unit-1: Activity: Collecting scientific literature on historical developments in microbiology.

Evaluation method: Evaluating the report based on a rubric.

Unit-2: Activity: Group discussion on various groups of special bacteria.

Evaluation method: Assessment of active participation, soft skills, communication skills, collaborative skills, time management etc., of a group or a student based on a rubric.

Unit-3: Activity: Presentation or poster summarizing the classification of Eu-bacteria based on nutrition.

Evaluation method: Assessment based on accuracy and understanding.

Unit-4: Activity: Microscopic observation of bacterial samples from soil/ phylloplane in their native place/ college campus.

Evaluation method: Evaluating the report on characteristics and classification of eubacteria.

Unit-5: Activity: Culture and mass production of bioinoculants.

Evaluation method: Skills performed in establishing the culture and mass production.

II Semester

Course 4: Origin of Life and Diversity of Microbes

Credits -1

- **I. Course Outcomes:** On successful completion of this practical course, student shall be able to:
 - 1. Take all necessary precautions in the microbiology laboratory.
 - 2. Handle the instruments and prepare media for laboratory work.
 - 3. Identify various microbes through microscopic observations

II. Laboratory/Field exercises:

- 1. Microbiology good laboratory practices and biosafety.
- 2. Study the principle and applications of important instruments (autoclave, hot air oven, incubator, Inoculation loop, Inoculation needle, membrane filter, laminar air flow system, colony counter. biological safety cabinets, BOD incubator, pH meter) used in the microbiology laboratory.
- 3. Study of Viruses (Gemini and TMV) using electron micrographs/ models.
- 4. Gram staining technique of Bacteria.
- 5. Microscopic study of Cyanobacteria using temporary/permanent slides.
- 6. Microscopic study of Eubacteria using temporary/permanent slides.
- 7.Study of Archaebacteria and Actinomycetes using permanent slides/ electronmicrographs/diagrams.

MODEL QUESTION PAPER - THEORY

Time: 3 Hours.

Max Marks: 70

(5 X 10 = 50M)

SECTION-A

Answer any 5 questions. Each question carries 4 marks (5 X 4 = 20M)

(Total 8 questions, questions 1-5 from Units 1-5 & questions 6-8 from any of the units)

- 1. Unit -I
- 2. Unit-II
- 3. Unit-III
- 4. Unit-IV
- 5. Unit-V
- 6. From any Unit
- 7. From any Unit
- 8. From any Unit

SECTION - B

Answer all the questions. Each question carries 10 marks.

(Each question (both 'A' or 'B') from each Unit.

9. from Unit I (**OR**) from Unit I

10. from Unit II (**OR**) from Unit II

11. from Unit III (**OR**) from Unit III

12. from Unit IV (**OR**) from Unit IV

13. from Unit V (**OR**) from Unit V